

# Polling Data from Allen-Bradley PLC

Using Ethernet Protocol

## **APPLICATION NOTE**

AUG-0079-00 2.1 en-US ENGLISH



# **Important User Information**

### Disclaimer

The information in this document is for informational purposes only. Please inform HMS Networks of any inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Networks and is subject to change without notice. HMS Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific applications, codes and standards. Further, HMS Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

# **Table of Contents**

### Page

| 1 | Prefa | ace 3                                                        |
|---|-------|--------------------------------------------------------------|
|   | 1.1   | About This Document                                          |
|   | 1.2   | Document history3                                            |
|   | 1.3   | Related Documents3                                           |
|   | 1.4   | Trademark Information                                        |
| 2 | Obje  | ctives 4                                                     |
| 3 | Requ  | uirements                                                    |
|   | 3.1   | Hardware5                                                    |
|   | 3.2   | Software5                                                    |
|   | 3.3   | PLC Protocol Compatibility5                                  |
| 4 | Impl  | ementation Steps7                                            |
|   | 4.1   | Link the Flexy and the PLC7                                  |
|   | 4.2   | Configure the IO Server7                                     |
|   | 4.3   | Create Tags in the Flexy10                                   |
|   | 4.4   | Monitor Tags12                                               |
| 5 | Trou  | bleshoot Tags in Error                                       |
|   |       |                                                              |
|   | 5.1   | False Positive                                               |
| Α | •     | False Positive    14      n-Bradley Tag Address Syntax    17 |
| Α | •     |                                                              |
| Α | Aller | n-Bradley Tag Address Syntax 17                              |

This page intentionally left blank

# 1 Preface

### 1.1 About This Document

This document explains in a few steps how the Flexy can poll data registers from an Allen-Bradley PLC based on Ethernet protocol.

For additional related documentation and file downloads, please visit <u>www.ewon.biz/support</u>.

### **1.2** Document history

| Version | Date       | Description                            |
|---------|------------|----------------------------------------|
| 1.0     | 2011-12-12 | First release                          |
| 2.0     | 2019-07-29 | Changed: General update                |
| 2.1     | 2021-05-31 | Changed: Table in SLC500 Family, p. 17 |

### **1.3** Related Documents

| Document                                                     | Author | Document ID |
|--------------------------------------------------------------|--------|-------------|
| Polling Data from Allen-Bradley PLC<br>Using Serial Protocol | HMS    | AUG-0045-00 |
| Ewon Flexy Base Units                                        | HMS    | IG-0014-00  |
| Ewon Flexy 205                                               | HMS    | IG-0028-00  |
| Flexy Family Reference Guide                                 | HMS    | RG-0008-00  |

### 1.4 Trademark Information

Ewon<sup>®</sup> is a registered trademark of HMS Industrial Networks SA. All other trademarks mentioned in this document are the property of their respective holders.

# 2 Objectives

The objective of this document is to explain how the Flexy can poll data registers out of one or more Allen-Bradley PLCs using Ethernet protocol.

Polling PLC data registers implies the following steps:

- 1. Link the Flexy with the PLC;
- 2. Configure theFlexy IO server;
- 3. Create tags in the Flexy;
- 4. Monitor tags.

# 3 Requirements

#### 3.1 Hardware

To follow this guide, you need:

- A computer suitable to connect to the Ewon Flexy.
  - → From a computer running a web-browser, you will configure the IO server in the Flexy to poll different types of PLC data registers.
  - $\rightarrow$  You access the Flexy web server either by using (one of) its local LAN port(s) or by another type of access such as VPN IP address.
- An Allen-Bradley PLC: PLC5, SLC500, MicroLogix, CompactLogix, ControlLogix or FlexLogix.
  - → Connection between the Ewon Flexy and the Allen-Bradley PLC must be done through Ethernet protocol. For polling tags over serial, see "Polling Data from Allen-Bradley PLC Using Serial Protocol" from *Related Documents, p. 3*.
  - $\rightarrow~$  The device will have its registers read by the tags configured in the IO server of the Flexy.

#### 3.2 Software

#### 3.2.1 eBuddy

The Flexy is configured through its web server. All you need is a standard web browser software such as Google Chrome<sup>®</sup> or Mozilla Firefox<sup>®</sup>.

Additionally, we suggest downloading the **eBuddy** utility on <u>our website</u>.

This utility can list all the Ewon Flexy on your network and change the default IP address of a Flexy to match your LAN IP address range. With eBuddy you can also easily upgrade the firmware of your Flexy if required.

#### 3.2.2 Ewon Flexy Firmware

The screenshots of this guide reflect firmware version 13.3s0, but you can expect the basic principles to remain the same in earlier/later versions.

A simple way to upgrade the Flexy firmware is to use eBuddy.

### 3.3 PLC Protocol Compatibility

The table below shows the protocols that are supported by the Flexy and, for each of those protocols, which IO server you need to use inside the Ewon Flexy to connect your Allen-Bradley PLC.

| PLC Family   | DF1 Protocol (RS232 link) | Flexy IO server |  |
|--------------|---------------------------|-----------------|--|
| SLC500       | Yes                       | DF1             |  |
| MicroLogix   | Yes                       | DF1             |  |
| PLC5         | Yes                       | DF1             |  |
| CompactLogix | Yes                       | ABLOGIX         |  |
| ControlLogix | Yes                       | ABLOGIX         |  |
| FlexLogix    | Yes                       | ABLOGIX         |  |

The DF1 IO server name does not mean that this server is limited to the DF1 protocol and associated serial link.

The DF1 IO server supports the EIP protocol of the listed PLC families as well.

# 4 Implementation Steps

### 4.1 Link the Flexy and the PLC

- 1. Link the LAN interface of the Flexy with the Ethernet card of the PLC.
- 2. Make sure that the Flexy's LAN IP address is in the same range as the PLC IP address.

You can use eBuddy to change the Flexy's LAN IP address if it is not within the same range as the PLC.

For Ewon Flexy with configurable LAN / WAN ports such as the Flexy 205, a LAN port is indicated by a green LED and a WAN port is indicated by a red LED.

For a Flexy with permanent LAN ports such as the Flexy 201 or 101, the LAN ports are the Ethernet ports on the base unit itself.

### 4.2 Configure the IO Server

- 1. Go to the Flexy's web interface.
- 2. Select the *IO Servers* menu option.

- 3. Select the *IO Server* corresponding to your PLC type:
  - **DF1** IO server for SLC500, MicroLogix, and PLC5 devices.
  - ABLOGIX IO server for CompactLogix, ControlLogix, and FlexLogix devices.

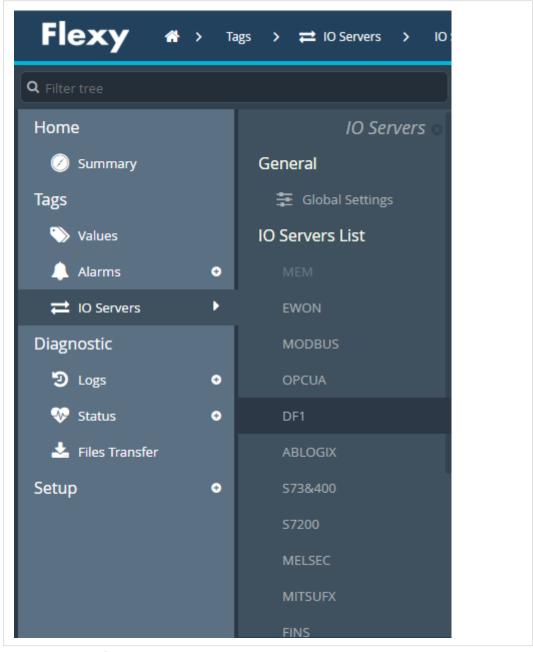



Fig. 1 IO server selection

- DF1 IO Server & Gateway settings Clea C Enabled Topic A Enter DF1 node or EIP connection path (IP address, followed 192,168,120,10 Global Device Address: by 1 or several (port,link) pairs MS Poll Rate: Default: 2000 Enabled Topic B Enter PLC address. Global Device Address: PLC address is made of on device type followed by a DF1 node or an EIP connection path address. Type may be ommited in that case the target device is assumed to be a SLC-500 like device. MS Default: 2000 Poll Rate: K Enabled Topic C Enter DF1 node or EIP connection path (IP address, followed Global Device Address: by 1 or several (port,link) pairs. Update
- 4. Enable at least one *Topic* to be able to poll data registers called tags out of your PLC.

#### Fig. 2 DF1 IO server settings

Topics are meant to allocate common properties to a group of tags.

Properties include Enable/Disable polling, Poll Rate, and Global Device Address.

a. Enter a valid address in the *Global Device Address* as per the table below.

| PLC Family   | Flexy IO server | Address syntax for EIP<br>protocol (Ethernet link) | Syntax key                                |
|--------------|-----------------|----------------------------------------------------|-------------------------------------------|
| SLC500       | DF1             | 192.168.0.61                                       | IP Address                                |
| MicroLogix   | DF1             | 192.168.0.61                                       | _                                         |
| PLC5         | DF1             | PLC5-192.168.0.61                                  | Device type-IP Address                    |
| CompactLogix | ABLOGIX         | 192.168.0.61,1,0                                   | IP Address, Port, Link                    |
| ControlLogix | ABLOGIX         | 192.168.0.61,1,0                                   | Basic syntax is "IP<br>Address,1,CPU slot |
| FlexLogix    | ABLOGIX         | 192.168.0.61,1,0                                   | number" (with no spaces after commas).    |

Even though there are only three topics, the Flexy can support polling from more than three PLCs on the same IO server.

To poll from more than three PLCs, do not specify the device address in the topic. Instead, include the device address as part of the tag address as described later in this document.

When entering a device address, a helper appears to indicate if the address uses a valid syntax for this IO server. An address using a valid syntax is displayed in green and an invalid syntax in red.

b. Set the *Poll rate*.

The poll rate is the refresh rate in ms (milliseconds) applicable to all data registers that is included in this topic. If you leave this field blank, the default value applied will be 2000 ms (2 seconds).

If you have tags that need to refreshed at a different rates, enable and configure multiple topics.

5. Click on *Update* to save your settings.

10 (22)

### 4.3 Create Tags in the Flexy

- 1. Select the *Values* option from the Tags menu.
- 2. Switch the "Mode" to Setup.

| Flexy # > Tags > % Values Logged in as <b>A</b> Adm @ (* <b>7</b> Wizard |            |            |         |   |   |   |             |             |           |       |            |       |             |
|--------------------------------------------------------------------------|------------|------------|---------|---|---|---|-------------|-------------|-----------|-------|------------|-------|-------------|
| <b>Q</b> Filter tree                                                     | Values     |            |         |   |   |   |             |             |           |       |            |       |             |
| Home                                                                     |            |            | Q Filte | r |   | 1 | C Add       | ]           |           |       |            |       |             |
| 🕖 Summary                                                                | MODE SETUP | MODE SETUP |         | Ø | 2 | æ | Name        | Type        | IO Server | Topic | IO Address | Value | Tag descrip |
| Tags                                                                     | PAGES      | +          |         | ~ |   |   | Lamp_Status | Boolean     | EWON      |       | DO1        | 0     | Iamp statu  |
| 🏷 Values                                                                 | All        |            |         | ~ |   |   | Counter1    | Integer     | ABLOGIX   | A     | TONFS.acc  | 2375  | Counter1 o  |
| 🔔 Alarms                                                                 | • Default  |            | ~       | ~ |   |   | COM_Status  | Floating po | ABLOGIX   | A     | status     | 1     | Communic    |
| ≓ IO Servers                                                             | System     |            |         |   |   |   | Output0     | Integer     | ABLOGIX   | A     | output0    | 1     | Output0 o   |

Fig. 3 Tag setup

3. Click the *Add* button to open the tag configuration window.

- a. Enter a *Tag Name*. Free text, no spaces, no symbols -, =, %, \$, @, # etc.
- b. Enter a *Description*. Free text.
- c. Select **DF1** or ABLOGIX as IO server depending on the product family of the relevant PLC.
- d. Enter a *Topic Name*: A, B or C.

The topic must have been configured in the IO server page (see *Configure the IO Server*, *p.* 7).

e. Enter the *PLC register* in the "Address" field which will be polled from the PLC.

As the address is entered, a tag helper appears to help properly format the tag address.

Typical examples addresses:

| DF1 IO server | ABLOGIX IO server    |
|---------------|----------------------|
| N7:1          | myvar                |
| B3:4          | PROGRAM:myprog.myvar |
| T4.ACC        | myvar/4              |
| F8:10         | mytable[6]           |

If you enter a wrong address syntax, the tag creation will be rejected and an error message will be displayed.

For more information on data register ID syntax, see *Allen-Bradley Tag Address Syntax*, *p.* 17.

| Freate a new Tag                   |                           |                 |
|------------------------------------|---------------------------|-----------------|
| Identification                     |                           |                 |
| Tag Name:                          | МуТад                     | Page: Default 🔻 |
| Tag Description:                   | This tag represents the # |                 |
| I/O Server Setup —<br>Server Name: | ABLOGIX                   | Topic Name: A   |
| Address:                           | letUp/4                   | Done            |
| Туре:                              |                           | PLC address     |
| eWON value                         | e = IO Server Value * 1   | + 0             |

Fig. 4 Tag setup 2

f. **Type**: The data type of the tag such as *Floating Point* or *Boolean*.

The *Automatic* option lets the Flexy decide the format depending on the IO server register/modifier type.

- 5. [Optional] The remaining fields are mostly left with their default value:
  - Force Read Only: Unchecked is the default.

When it is checked, users will not be able to change a value in *View* mode on the *Values* page.

**1** The tag remains read/write for commands written in the embedded BASIC script program or on custom webpages.

- Ewon value: Defaults are \*1+0.

This field applies a *scale factor* and an *offset* to the raw value coming from the IO server.

The scale factor and offset are float values. Negative values are accepted.

TAGval = IOSERVERval \* scale factor + offset.

6. Click the *Add* button when your tag configuration is complete.

If everything is OK the new tag appears in the tag list.

You can repeat the same sequence for any other tags. If you need to create new tags that have almost the same properties as an existing tag in the list, select the source tag and click the **Add** *as selected* option.

All properties of the existing tag will be copied in the new tag creation wizard. Copied properties include the tag name. Since the tag name must be unique, make sure you change the name of the new tag.

It is the first selected tag that will be copied if more than one single tag is selected in the list.

#### 4.4 Monitor Tags

You can change the mode to *View* to monitor tags values and their status.

| /alues             |       |     |   |   |                  |            |       |                                             |  |
|--------------------|-------|-----|---|---|------------------|------------|-------|---------------------------------------------|--|
| MODE VIEW          | QFilt | :er |   |   | 😂 🛛 🖋 Edit Value | 💷 HL Table |       |                                             |  |
|                    | 4     | Ø   | 2 | 2 | Name             | •          | Value | Tag description                             |  |
| VIEW MODE SETTINGS |       |     |   |   | Counter3         |            | 0     |                                             |  |
| Autosave tag value |       |     |   |   | Test_Tag2        |            | 0     | Tag on Siemens PLC (Address: Bit 2 of MB10) |  |

Fig. 5 Monitor tags

This page shows the tags and their last polled values as well as alarm information and logging information for tags with alarming and logging enabled.

The page refreshes automatically at the rate set on the bottom of the page.

On this page, you can sort, filter, and search for tags to easily find specific tags.

Information about configuring additional tag features is available in the *Flexy Family Reference Guide*, see *Related Documents*, *p. 3*.

You can change the value of tags that are configured as read/write (unless the box *Force Read Only* was ticked in the tag creation wizard).

To change the value of a tag:

- 1. Select the tag and press the *Edit Value* button, or double click its current value.
- 2. Enter the new value.
- 3. Click the *Apply* button to update all of the edited tags.

| /alues                 |        |    |                       |   |                  |         |              |                                                        |
|------------------------|--------|----|-----------------------|---|------------------|---------|--------------|--------------------------------------------------------|
| MODE VIEW              | Q Filt | er |                       |   | 🕫   🖋 Edit Value | 🖺 Apply | III HL Table |                                                        |
| MODE VIEW              | 4      | 0  | $\mathbf{\mathbf{M}}$ | 2 | Name             | *       | Value        | Tag description                                        |
| VIEW MODE SETTINGS     |        |    |                       |   | Lamp_Status      |         | 1            | Light controlled by eWON digital output (1=ON - 0=OFF) |
| Autosave tag value     |        |    |                       |   | COM_Status       |         | 1            | Communication status with S7-300 MPI (1=OK, 2= NOT OK) |
| Auto edit the next tag |        |    |                       |   | Test_Tag1        |         | 0 → 5        | Tag on Siemens PLC (Address: MB10)                     |
|                        |        |    |                       |   | Output_1         |         | 1            | Output on PLC (at Q0.1)                                |
| PAGES                  |        |    |                       |   | Output_0         |         | 0            | Output on PLC (at Q0.0)                                |
| All                    |        |    |                       |   | Counter1         |         | 106 → 68     | Counter on Siemens PLC (Address: MW10)                 |
| Default                |        |    |                       |   | Counter2         |         | 0            | Counter on Siemens PLC (Address: MW20)                 |

Fig. 6 Edit a tag

By clicking the *Apply* button, the Flexy sends the new values to the registers of the PLC. Since the value displayed in the value column is the last value read from the PLC, the new value will not appear until the next poll takes place.

# 5

### **Troubleshoot Tags in Error**

A tag value displayed with a red icon in the Quality/Status column indicates that the quality for this value is considered as bad.

| Counter3                     | HL Table Value Tag description |                         |
|------------------------------|--------------------------------|-------------------------|
|                              |                                |                         |
| <ul> <li>Counter3</li> </ul> |                                |                         |
| counterp                     | 0 0                            |                         |
| ✓ ✓ Counter2                 | 0 Counter on Siem              | ens PLC (Address: MW20) |
| V V Counter1                 | 191 Counter on Siem            | ens PLC (Address: MW10) |
|                              |                                |                         |



As long as the quality of the displayed value is good, no icon appears in this column.

More information about the nature of the problem can be obtained by placing the mouse cursor on the icon.

| VIEW                 | Q Filte | er |   |          | C HL Table    |   |               |                      |               |  |
|----------------------|---------|----|---|----------|---------------|---|---------------|----------------------|---------------|--|
|                      | ¢       | Ø  | ~ | <b>B</b> | Name          | • | Value         | Unit                 | Tag descripti |  |
| MODE SETTINGS        |         |    |   |          | eWON_100_Tag1 | 0 | 100           | No unit              |               |  |
| tosave tag value     |         |    |   |          | eWON_102_Tag1 | 0 | 102           | No unit              |               |  |
| to edit the next tag |         |    |   |          | eWON_103_Tag1 |   | 103           | No unit              |               |  |
|                      |         |    |   |          | eWON_101_Tag1 | 0 | 101           | No unit              |               |  |
| S                    |         |    |   |          | eWON_104_Tag1 | 0 | No communicat | tion <sup>unit</sup> |               |  |
|                      |         |    |   |          | eWON_105_Tag1 | 0 | 105           | No unit              |               |  |

Fig. 8 Tag error with description

To get more information about the nature of the error and the sequence of events before and after the error occurred, you can check the events appearing in the *Event Log*.

| <b>2</b> , Filter   | Items to c | lisplay: 500 🜲 😂           | Class: | All Events | - | Level: | Trace |            | - |
|---------------------|------------|----------------------------|--------|------------|---|--------|-------|------------|---|
| Time 💌              | Event      | Description                |        |            |   |        |       | Originator |   |
| 13/06/2019 21:37:50 | 22307      | smbs-Connect socket failed |        |            |   |        |       | mbsio      |   |
| 13/06/2019 21:37:47 | 22307      | smbs-Connect socket failed |        |            |   |        |       | mbsio      |   |

MODBUS IO server — Error logs Fig. 9

#### 5.1 **False Positive**

A single tag in error (truly bad) can cause a number of other (good) tags to appear in error as well because tag requests and responses are grouped in one single envelope for communication optimization purposes. The whole group is then affected with the same error status.

During commissioning or maintenance, you may want to isolate the truly bad tag from the others. Therefore, you have to disable the polling of tags in error.

This can be done in the *IO Server* ► *Global Settings* parameters.

| <b>\</b> Filter tree |                   | IO Servers global configuratio               | n                       |      |                                                                              |
|----------------------|-------------------|----------------------------------------------|-------------------------|------|------------------------------------------------------------------------------|
| Home                 | IO Servers o      | <ul> <li>eWON servers and gateway</li> </ul> | IP ports                |      |                                                                              |
| 🧭 Summary            | General           | Modbus TCP Port:                             |                         |      | These changes will only be effective after reboot                            |
| Tags                 | 🗿 Global Settings | Modbus ICF Port.                             | 302                     |      | These changes will only be effective after reboot                            |
| 📎 Values             | IO Servers List   | EtherNet/IP Port:                            | 44818                   |      | These changes will only be effective after reboot                            |
| 🔔 Alarms             | мем               | ISOTCP Port:                                 | 102                     |      | These changes will only be effective after reboot                            |
| Summary              | EWON              | FINS Port:                                   | 9600                    |      | These changes will only be effective after reboot                            |
| ilistory             | MODBUS            |                                              |                         |      |                                                                              |
| 2 IO Servers         |                   | Advanced Parameters                          |                         |      |                                                                              |
| Diagnostic           | DF1               |                                              | S Disable Tags in Error |      |                                                                              |
| D Logs               | • ABLOGIX         | Default TCP RX/TX Timeout:                   | 1000                    | MSec | Minimum 500. Applies to all IO servers (except Modbus) after next<br>reboot. |
| 💎 Status             | S73&400           |                                              |                         |      |                                                                              |

Fig. 10 Disable tags in error

This page intentionally left blank

# A Allen-Bradley Tag Address Syntax

### A.1 SLC500 Family

#### A.1.1 Syntax

The general tag address format is as follows:

X[file]:element [.field][/bit]

where:

| х       | Identifies the file type                       |
|---------|------------------------------------------------|
| file    | File number, must be 0-255 decimal.            |
| element | Element number within the file.                |
| field   | Used only for Counter, Timer and Control files |
| bit     | Valid for all types except Floating.           |

The table below summarizes the valid file types, the default file number for each type and the fields allowed:

| х  | File Type | Default File Nb | Fields                                       | Tag format in Flexy |
|----|-----------|-----------------|----------------------------------------------|---------------------|
| 0  | Output    | 0               |                                              | DWord               |
| I  | Input     | 1               |                                              | DWord               |
| S  | Status    | 2               |                                              | DWord               |
| В  | Binary    | 3               |                                              | DWord               |
| Т  | Timer     | 4               | .PRE, .ACC, .EN, .TT, .<br>DN                | DWord               |
| С  | Counter   | 5               | .PRE, .ACC, .CU, .CD, .<br>DN, .OV, .UN, .UA | DWord               |
| R  | Control   | 6               | .LEN, .POS, .EN, .DN, .<br>ER, .UL, .IN, .FD | DWord               |
| N  | Integer   | 7               |                                              | DWord               |
| F  | Floating  | 8               |                                              | Floating point      |
| A  | ASCII     | None            |                                              | DWord               |
| ST | String    | None            |                                              | String              |
| L  | Long Word | None            |                                              | DWord               |

The tag format is the one defined by theFlexy if it was configured as *Automatic*, see *Create Tags in the Flexy*, *p. 10*:

- DWord: an unsigned 32 bits integer.
- Floating point: IEEE single precision float representation.

#### A.1.2 Typical Examples

| Item type          | Address to use in Ewon Flexy | Description                  |
|--------------------|------------------------------|------------------------------|
| Integer File Items | N7:10                        | Integer N7:10                |
|                    | N7:10/14                     | Bit 14 of Integer N7:10      |
| Output File Items  | O:1.0                        | Output 1, element 0          |
|                    | 0:1.0/5                      | Bit 5 of Output 1, element 0 |
| Input File Items   | 1:1.0                        | Input 1, element 0           |

| Item type           | Address to use in Ewon Flexy | Description                 |  |  |
|---------------------|------------------------------|-----------------------------|--|--|
|                     | 1:1.0/5                      | Input 1, element 0, bit 5   |  |  |
| Status File Items   | S2:42                        | Seconds info of PLC         |  |  |
|                     | S2:10/2                      | Forces enabled on PLC       |  |  |
| Binary File Items   | B3:5/1                       | Bit 1 of element 5          |  |  |
| Timer File Items    | T4:1.ACC                     | Accumulator of timer T4:1   |  |  |
|                     | T4:1.PRE                     | Preset of of timer T4:1     |  |  |
| Counter File Items  | C5:2.ACC                     | Accumulator of counter C5:2 |  |  |
|                     | C5:2.PRE                     | Preset of counter C5:2      |  |  |
| Control File Items  | C6:1.LEN                     | Len of control file C6:1    |  |  |
|                     | C6:1.POS                     | POS of control file C6:1    |  |  |
| Floating File Items | F8:5                         | Floating point F8:5         |  |  |

# A.2 ContolLogix Family

#### A.2.1 Controller Tags

The controller tag address format is as follows:

```
<SymbolicTagName>[/bit]
```

To read the controller tags, use the *Symbolic Tag Name* created inside the controller tag section of your PLC:

| Controller Organizer                                    | ope: 🛐 eWON       | Sh <u>o</u> w: Al  | l Tags |            |         | 🔽 🏹. Enter N. |
|---------------------------------------------------------|-------------------|--------------------|--------|------------|---------|---------------|
| Controller Tags                                         | Name              | <u>=</u> ∎ △ Value | + Ford | e Mask 🛛 🗲 | Style   | Data Type     |
| Controller Fault Hendler                                | ±-Local:1:C       |                    | {}     | {}         |         | AB:1769_0     |
| Power-Up Handler                                        | +-Local:1:I       |                    | {}     | {}         |         | AB:1769_0     |
| 🖨 📇 Tasks                                               | -Local:1:0        |                    | {}     | {}         |         | AB:1769_      |
| 🖨 🤯 MainTask                                            | - Local:1:0.Data  | 2#0000             | 000    |            | Binary  | INT           |
| 🖻 🚭 MainProgram                                         | Local:1:0.Data.0  |                    | 1      |            | Decimal | BOOL          |
| Program Tags                                            | Local:1:0.Data.1  |                    | 0      |            | Decimal | BOOL          |
|                                                         |                   |                    | -      |            |         |               |
| Unscheduled Programs                                    | Local:1:0.Data.2  |                    | 0      |            | Decimal | BOOL          |
| Motion Groups                                           | Local:1:0.Data.3  |                    | 0      |            | Decimal | BOOL          |
| Unarouped Axes                                          | Local:1:0.Data.4  |                    | 0      |            | Decimal | BOOL          |
| Add-On Instructions                                     | -Local:1:0.Data.5 | i                  | 0      |            | Decimal | BOOL          |
| Data Types                                              | Local:1:0.Data.6  |                    | 0      |            | Decimal | BOOL          |
| User-Defined                                            | Local:1:0.Data.7  |                    | 0      |            | Decimal | BOOL          |
| 🗄 🙀 Strings                                             | Local:1:0.Data.8  | 1                  | 0      |            | Decimal | BOOL          |
| Add-On-Defined                                          | Local:1:0 Data 9  | 1                  | 0      |            | Decimal | BOOL          |
| 😠 🙀 Predefined                                          | Local:1:0.Data.1  |                    | 0      |            | Decimal | BOOL          |
| 🗄 🚂 Module-Defined                                      | Local:1:0.Data 1  | -                  |        |            | Decimal |               |
| Trends                                                  |                   |                    | 0      |            |         | BOOL          |
| I/O Configuration                                       | Local:1:0.Data.1  | -                  | 0      |            | Decimal | BOOL          |
| 🖻 🏢 Backplane, CompactLogix System                      | Local:1:0.Data.1  | 3                  | 0      |            | Decimal | BOOL          |
| 1769-L35CR eWON                                         | -Local:1:0.Data.1 | 4                  | 0      |            | Decimal | BOOL          |
| ☐ ♣ 1769-L35CR ControlNet Port LocalCNB<br>응 ControlNet | Local:1:0.Data.1  | 5                  | 0      |            | Decimal | BOOL          |
| Controlivet     Group act Bus Local                     | ±-MyVar           |                    | 0      |            | Decimal | DINT          |

Fig. 11 Controller Tags

To read an array of a controller tag:

| Controller Organizer          | Scope: 🛐 eWON 🛛 🖌 🤨 | Show: All Tags |                | *       | <b>Y.</b> Enter Nai |
|-------------------------------|---------------------|----------------|----------------|---------|---------------------|
| Controller Tags               | Name <u>=</u>       | Value 🗧        | Force Mask 🛛 🗲 | Style   | Data Type           |
| Controller Fault Handler      |                     | 555            |                | Decimal | DINT                |
| Power-Up Handler              | - ons               | {}             | {}             | Decimal | DINT[10]            |
| 🖻 🔄 Tasks                     | + ons[0]            | 0              |                | Decimal | DINT                |
| 😑 🚭 MainTask                  |                     | 0              |                | Decimal | DINT                |
|                               | + ons[2]            | 0              |                | Decimal | DINT                |
| → Program Tags<br>MainRoutine | - ons[3]            | 0              |                | Decimal | DINT                |
| E Seq1                        | ons[3].0            | 0              |                | Decimal | BOOL                |
| Unscheduled Programs          |                     | 0              |                | Decimal | BOOL                |
| 🖨 🔄 Motion Groups             |                     | 0              |                | Decimal | BOOL                |

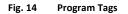
Fig. 12 Controller Tags — Read an array

#### To read a timer, control or counter of a controller tag:

| <symbolictagname>.acc</symbolictagname> | (or .c   | tl or .pre)  | )  |         |              |         |          |
|-----------------------------------------|----------|--------------|----|---------|--------------|---------|----------|
| Controller Tags                         | N        | ame _        | 84 | Value 🔶 | Force Mask 🔸 | Style   | Data Typ |
| Controller Fault Handler                | +        | -Local:1:C   |    | {}      | {}           |         | AB:1769  |
| Power-Up Handler                        | +        | -Local:1:I   |    | {}      | {}           |         | AB:1769  |
| 🖨 📇 Tasks                               | +        | -Local:1:0   |    | {}      | {}           |         | AB:1769  |
| 😑 🧔 MainTask<br>😑 🚭 MainProgram         | <b> </b> | -ons         |    | {}      | {}           | Decimal | DINT[10  |
|                                         |          | output0      |    | 0       |              | Decimal | BOOL     |
| 🧭 Program Tags<br>🚹 MainRoutine         |          | output1      |    | 0       |              | Decimal | BOOL     |
| 🛱 Seq1                                  |          | output2      |    | 0       |              | Decimal | BOOL     |
| Unscheduled Programs                    |          | output3      |    | 0       |              | Decimal | BOOL     |
| 🖨 😁 Motion Groups                       |          | output4      |    | 0       |              | Decimal | BOOL     |
|                                         |          | output5      |    | 0       |              | Decimal | BOOL     |
| Add-Off Instructions     Data Types     |          | -TON         |    | {}      | {}           |         | TIMER[   |
| User-Defined                            |          | -TON[0]      |    | {}      | {}           |         | TIMER    |
| 🗊 🙀 Strings                             |          | + TON[0].PRE |    | 3000    |              | Decimal | DINT     |
| Add-On-Defined                          |          | + TON[0].ACC |    | 0       |              | Decimal | DINT     |
| 🖬 🔙 Predefined                          |          | TON[0].EN    |    | 0       |              | Decimal | BOOL     |
| 🖮 🔙 Module-Defined                      |          | TON[0].TT    |    | 0       |              | Decimal | BOOL     |

Fig. 13 Controller Tags — Read a timer, control or counter

#### **Typical Examples**


| Item type | Address to use in Ewon Flexy | Description                                                                                                 |
|-----------|------------------------------|-------------------------------------------------------------------------------------------------------------|
| Local:1:0 | Local:1:O.Data               | Local IO module 1:0                                                                                         |
|           | Local:1:0.Data/2             | Bit 2 of Local IO module 1:0                                                                                |
| ons       | ons[3]                       | 3d element of INT Array                                                                                     |
|           | ons[3]/2                     | Bit 2 of 3d element of INT Array<br>Note .2 replaced by /2 while Ewon does not support .<br>before a number |
| TON       | TON[0].PRE                   | Preset of Timer TON[0]                                                                                      |
| Myvar     | Myvar                        | DINT                                                                                                        |

### A.2.2 Program Tags

The program tag address format is as follows:

PROGRAM:ProgName.]SymbolicTagName

| Controller Organizer 🚽 🕂 | <u>×</u> | Scope: 🕞 MainProgram | *    | Sh <u>o</u> w: All Tags |                | ~       | <b>Y.</b> Enter Nani |
|--------------------------|----------|----------------------|------|-------------------------|----------------|---------|----------------------|
| Controller eWON          |          | Name                 | 18 A | Value 🔦                 | Force Mask 🛛 🔸 | Style   | Data Type            |
| Controller Fault Handler |          | ±-Myvar2             | _    | 1                       | 0              | Decimal | DINT                 |
| 🔤 Power-Up Handler       |          | -TON1                |      | {                       | } {}           |         | TIMER                |
| 🖨 📇 Tasks                |          | + TON1.PRE           |      | 5.                      | 5              | Decimal | DINT                 |
| 🖨 🔁 MainTack             |          | + TON1.ACC           |      |                         | D              | Decimal | DINT                 |
| Program Tags             |          | -TON1.EN             |      |                         | D              | Decimal | BOOL                 |
|                          |          | -TON1.TT             |      |                         | D              | Decimal | BOOL                 |
| 🗎 Seq1                   |          | TON1.DN              |      |                         | 0              | Decimal | BOOL                 |



#### **Typical Examples**

| Item type                         | Address to use in Ewon Flexy | Description                                |
|-----------------------------------|------------------------------|--------------------------------------------|
| lyvar2 PROGRAM:MainProgram.Myvar2 |                              | tag Myvar2 inside MainProgram              |
|                                   | PROGRAM:MainProgram.Myvar2/4 | bit 4 of tag Myvar2 inside<br>MainProgram  |
| TON1                              | PROGRAM:MainProgram.TON1.PRE | preset of Timer TON1 inside<br>MainProgram |

### A.3 Status Register

The status tag is a special tag that returns information about the current state of the communication for a given device.

The status tag address syntax is as follows:

Status[Global Device Address]

You can define a status tag for each PLC used.

If you use the status address, the tag must be configured as an analog data type such as floating point or integer.

| Status value | Description                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0            | Communication not initialized: Status UNKNOWN.<br>If no tag is polled on that device address, the communication status is unknown. |
| 1            | Communication OK                                                                                                                   |
| 2            | Communication NOT OK                                                                                                               |

This page intentionally left blank