
eWON binary data files format
In eWON, you can export some files in binary format.
ircall.bin Historical recording of tags
inst_val.bin Instant values of tags

KB-0043-0-(eWON binary data files format) Page 1/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

IMPORTANT FIRMWARE VERSION:
Pay attention that data formats changed a little with the eWON
firmware 6 due to the new TagType (Integer and DWord).
see Backward Compatibility chapter.

1 ircall.bin
The ircall.bin file contains the binary values of all recorded Tags defined in the eWON.
This file is an image of the Tag memory of the eWON.
This file is present on every eWON type, but this file is empty if the eWON cannot record data
(eWON500, eWON2xxx).

1.1 Header structure
The IrcAll.bin file begins by a Header structure.

Firmware Major #16 Firmware Minor #16

unused #16 Record Size #16

This structure contains 4 short integers (16bits): the firmware version of the eWON (Major and
Minor), an unused data (Dummy) and the length of the record structure (RecordSize).
Example of implementation in C++:

typedef struct
{
 unsigned short VersionHi;
 unsigned short VersionLo;
 unsigned short Dummy;
 unsigned short StructLen;
}
HistoricalHeader_t;

If your eWON runs firmware version 6.1, the Header will be 6 1 0 16.

KB-0043-0-(eWON binary data files format) Page 2/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

IMPORTANT The processor of the eWON uses the Big Endian format for memory
access (most significant byte first) like Motorola processor. Thus, this
access method is also applicable for the ircall.bin file. In PC world (Intel
processor), the access method is Little Endian! à We need to reverse
all bytes read (and words if necessary) from files in order to correctly
interpret it in a PC program.

1.2 Record structure (since firmware 6)
After the 8 bytes of the Header, the eWON data can be found. Each record is encoded in a
16 bytes structure defined as follows:

LogTime #32

Qual
#2

Type
#4

MSec
#10

IntraSecCounter
#16

TagID
#31

Init
#1

TagValue (32 bits)

Field name Field description
LogTime (32 bits) Absolute time in second (since 1970) for the record
Quality (2 bits) Quality of the Tag (0:Bad 1:Uncertain 3:Good)
TagType (4 bits) Tag type (0:Boolean 1:Float32 2:Integer32

3:unsignedInteger32)
MSec (10 bits) Set to 0. deprecated: This was the number of MSec to add to LogTime in

order to get the complete timestamp of the record.

IntraSecCounter (16 bits) This value is incremented for each point logged during the same
second (incremented even if TagId is different).

TagID (31 bits) Unique Id of the Tag (== value in Var_lst.txt), never the same for
2 tags, even if tag deleted

InitValue (1 bits) TRUE if the point was log due to a restart of the system
TagValue (32 bits) Actual value logged at the beginning of the interval

Coded as Float32, as Integer32 or as Unsigned32.

Example of implementation in C++:
typedef struct
{
 time_t LogTime;
 unsigned short IntraSecCounter;
 unsigned short MSec:10;
 unsigned short Type:4;
 unsigned short IrcQuality:2;
 unsigned int InitValue:1;
 unsigned int TagId:31;
 float TagValue;
}
HistoricalRecordV6_t;

Note: Due to the BigEndian to LittleEndian swap of bytes and Words, the structure elements
are in reverse order.

KB-0043-0-(eWON binary data files format) Page 3/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

1.3 Record structure (before firmware 6)
After the 8 bytes of the Header, the eWON data can be found. Each record is encoded in a
16 bytes structure defined as follows:

LogTime #32

MSec #16 IntraSecCounter #16

TagID #31 Init
#1

TagValue #32

Field name Field description
LogTime (32 bits) Absolute time in second (since 1970) for the record
MSec (16 bits) Set to 0. deprecated: This was the number of MSec to add to LogTime in

order to get the complete timestamp of the record.

IntraSecCounter (16 bits) This value is incremented for each point logged during the same
second (incremented even if TagId is different).

TagID (31 bits) Unique Id of the Tag (== value in Var_lst.txt), never the same for
2 tags, even if tag deleted

InitValue (1 bits) TRUE if the point was log due to a restart of the system
TagValue (32 bits) Actual value logged at the beginning of the interval

Coded as Float32, as Integer32 or as Unsigned32.

Example of implementation in C++:
typedef struct
{
 time_t LogTime;
 unsigned short IntraSecCounter;
 unsigned short MSec;
 unsigned int InitValue:1;
 unsigned int TagId:31;
 float TagValue;
}
HistoricalRecord_t;

Note: Due to the BigEndian to LittleEndian swap of bytes and Words, the structure elements
are in reverse order.

KB-0043-0-(eWON binary data files format) Page 4/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

2 inst_val.bin
The inst_val.bin file contains the current values of all tags defined in the eWON.

2.1 Header
It will begin with a header of 20 bytes

Revision #32

RecordSize #32

NumberOfTag #32

RecFlag #32

Reserved #32

Field name Field description
Revision (32 bits) Revision of the inst_val file

1: before firmware6
2 and above: since firmware6

RecordSize (32 bits) Size of the Record structure representing each tags information
NumberOfTags (32 bits) Number of tags recorded in inst_val file
RecFlag (32 bits) Internal use
Reserved (32 bits) Internal use

Example of implementation in C++:
typedef struct
{
 int Rev;
 int RecSize; //Record size
 int NbTag; //Number of tag exported
 int RecFlag;
 int Reserved;
}
InstantValueHeader_t;

KB-0043-0-(eWON binary data files format) Page 5/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

2.2 Record
After the header, each eWON tags information will be represented in the following structure:

TagId #32

TagValue #32

AlarmStatus #32

AlarmType #32

TagType #16 TagQuality #16

Field name Field description
TagId (32 bits) ID of the tag
TagValue (32 bits) Value of the tag.

Coded as Float32, as Integer32 or as Unsigned32 depending of
the TagType

AlarmStatus (32 bits) Status of the alarm of the tag
0: none
1: pretrigger
2: alarm
3: acknowledged
4: return to normal

AlarmType (32 bits) type of the alarm
0: none
1: high
2: low
3: level
4: high_high
5: low_low

TagType (16 bits) Tag type
0: Boolean
1: Float32
2: Integer32
3: UnsignedInteger32

TagQuality (16 bits) The quality used in the eWON is based on the quality defined by
the OPC Foundation. It consists of a 16-bit value where

• Bits 15-8 are vendor-specific quality information
• Bits 7-6 represent the major quality (0:bad / 1:uncertain /
3:good)
• Bits 5-2 represent the sub-status
• Bits 1-2 represent the limit status

note: On eWON before firmware6, the last 32bits of the structure were Unused.

KB-0043-0-(eWON binary data files format) Page 6/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

Example of implementation in C++:
typedef struct
{
 int TagId;
 float TagValue;
 int AlStatus;
 int AlType;
 unsigned short Quality;
 unsigned short Type;
}
InstantValueRecord_t;

Note: Due to the BigEndian to LittleEndian swap of bytes and Words, the structure elements
composing a doouble word (32bits) are in reverse order.

3 Backward Compatibility
For backward compatibility, eWON with firmware 6 (and above) can be force to produce files
in the same format as before FW6.
For that, set the PreRev6Compat parameter to 1 in the config.txt file.

PreRev6Compat:1

This parameter applies on files defined by the ExportBlocDescriptor:
• $dtHL $ftB
• $dtHL $ftT
• $dtIV $ftT

KB-0043-0-(eWON binary data files format) Page 7/7

KB Name eWON binary data files format

Type Binary data format

Since revision NA

KB Number KB-0043-0 Build 14

Knowledge Base Information Mod date 25. May. 2011

	1 ircall.bin
	1.1 Header structure
	1.2 Record structure (since firmware 6)
	1.3 Record structure (before firmware 6)

	2 inst_val.bin
	2.1 Header
	2.2 Record

	3 Backward Compatibility

